LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic All-Photonic Artificial Synapses Enabled by Anti-Stokes Photoluminescence.

Photo by itfeelslikefilm from unsplash

All-photonic synaptic devices with the merits of visible signals and high spatiotemporal resolution are promising to break the Von Neumann bottleneck. Although organic synapses outperform their inorganic counterpart for easy… Click to show full abstract

All-photonic synaptic devices with the merits of visible signals and high spatiotemporal resolution are promising to break the Von Neumann bottleneck. Although organic synapses outperform their inorganic counterpart for easy molecular modulation and lower energy consumption, the organic all-photonic artificial synapse has never been reported. Here, all-photonic synaptic characteristics were unprecedentedly observed in an organic semiconductor, (3,6-dimethyl-9H-carbazol-9-yl)(thiophen-2-yl) methanone (S2OC), with anti-Stokes photoluminescence. Impressively, the intensity of fluorescence from the higher excited state (S3) exhibited synaptic performance, which constantly increased with irradiation time through a channel composed of intersystem crossing, triplet-triplet annihilation, and energy transfer. More importantly, the relationship between the molecular structure and synaptic performance was established. Based on the synaptic photoplasticity property, noncontacted multilevel anticounterfeiting and imaging recognition were realized in all-photonic synapse arrays. This work provides a universal strategy for tuning the performances of organic synapses upon regulating the molecular structures, which paves the way for the application of organic semiconductors in artificial intelligence.

Keywords: anti stokes; organic photonic; artificial synapses; stokes photoluminescence; photonic artificial

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.