LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hexagonal Cobalt Nanosheets for High-Performance Electrocatalytic NO Reduction to NH3.

Photo by martindorsch from unsplash

Electrocatalytic nitric oxide (NO) reduction not only provides an extremely promising strategy for ambient NH3 generation but also alleviates the artificially disrupted N-cycle balance. However, exploring efficient electrocatalysts to enhance… Click to show full abstract

Electrocatalytic nitric oxide (NO) reduction not only provides an extremely promising strategy for ambient NH3 generation but also alleviates the artificially disrupted N-cycle balance. However, exploring efficient electrocatalysts to enhance the NO electroreduction performance remains a significant challenge. Herein, a hexagonal-close-packed Co nanosheet (hcp-Co) is prepared and exhibits a high NH3 yield of 439.50 μmol cm-2 h-1 and a Faraday efficiency of 72.58%, outperforming the face-centered cubic phase of the Co nanosheet (fcc-Co) and most reported electrocatalysts. Through the combination of density functional theory calculations and NO temperature-programmed desorption experiments, the superior catalytic NO reduction reaction (NORR) activity on the hcp-Co can be attributed to the unique electron structures and proton shuttle effect. A proof-of-concept device of Zn-NO batteries using the hcp-Co as the cathode is assembled and shows a power density of 4.66 mW cm-2, which is superior to the reported performance in the literature so far.

Keywords: hexagonal cobalt; cobalt nanosheets; nanosheets high; high performance; reduction; performance

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.