LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO2 Reduction.

Photo from wikipedia

Molecule-based heterogeneous photocatalysts without noble metals are one of the most attractive systems for visible-light-driven CO2 reduction. However, reports on this class of photocatalysts are still limited, and their activities… Click to show full abstract

Molecule-based heterogeneous photocatalysts without noble metals are one of the most attractive systems for visible-light-driven CO2 reduction. However, reports on this class of photocatalysts are still limited, and their activities are quite low compared to those containing noble metals. Herein, we report an iron-complex-based heterogeneous photocatalyst for CO2 reduction with high activity. The key to our success is the use of a supramolecular framework composed of iron porphyrin complexes bearing pyrene moieties at meso positions. The catalyst exhibited high activity for CO2 reduction under visible-light irradiation (29100 μmol g-1 h-1 for CO production, selectivity 99.9%), which is the highest among relevant systems. The performance of this catalyst is also excellent in terms of apparent quantum yield for CO production (0.298% at 400 nm) and stability (up to 96 h). This study provides a facile strategy to create a highly active, selective, and stable photocatalyst for CO2 reduction without utilizing noble metals.

Keywords: iron; driven co2; co2 reduction; visible light; reduction; light driven

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.