LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iron-Catalyzed C(Sp3)-H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer.

Photo by kellysikkema from unsplash

Catalytic C(sp3)-H functionalization has provided enormous opportunities to construct organic molecules, facilitating the derivatization of complex pharmaceutical compounds. Within this framework, direct hydrogen atom transfer (HAT) photocatalysis becomes an appealing… Click to show full abstract

Catalytic C(sp3)-H functionalization has provided enormous opportunities to construct organic molecules, facilitating the derivatization of complex pharmaceutical compounds. Within this framework, direct hydrogen atom transfer (HAT) photocatalysis becomes an appealing approach to this goal. However, the viable substrates utilized in these protocols are limited, and the site selectivity shows preference to activated and thermodynamically favored C(sp3)-H bonds. Herein, we describe the development of undirected iron-catalyzed C(sp3)-H borylation, thiolation, and sulfinylation reactions enabled by the photoinduced ligand-to-metal charge transfer (LMCT) process. These reactions exhibit remarkably broad substrate scope (>150 examples in total), and most importantly, all of these three reactions show unconventional regioselectivity, with the occurrence of C(sp3)-H borylation, thiolation, and sulfinylation preferentially at the distal methyl position. The procedures are operationally simple and readily scalable and provide access to high-value products from simple hydrocarbons in one step. Mechanistic studies and control experiments indicate that the afforded site selectivity is not only relevant to the HAT species but also largely affected by the use of boron- and sulfone-based radical acceptors.

Keywords: borylation thiolation; sp3 borylation; transfer; thiolation sulfinylation

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.