LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Gate Operations on a Spectrally Addressable Photogenerated Molecular Electron Spin-Qubit Pair.

Photo from wikipedia

Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial… Click to show full abstract

Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial singlet quantum state to serve as a spin-qubit pair (SQP). Achieving good spin-qubit addressability is challenging because many organic radical ions have large hyperfine couplings (HFCs) in addition to significant g-anisotropy, which results in significant spectral overlap. Moreover, using radicals with g-factors that deviate significantly from that of the free electron results in difficulty generating microwave pulses with sufficiently large bandwidths to manipulate the two spins either simultaneously or selectively as is necessary to implement the controlled-NOT (CNOT) quantum gate essential for quantum algorithms. Here, we address these issues by using a covalently linked donor-acceptor(1)-acceptor(2) (D-A1-A2) molecule with significantly reduced HFCs that uses fully deuterated peri-xanthenoxanthene (PXX) as D, naphthalenemonoimide (NMI) as A1, and a C60 derivative as A2. Selective photoexcitation of PXX within PXX-d9-NMI-C60 results in sub-nanosecond, two-step electron transfer to generate the long-lived PXX•+-d9-NMI-C60•- SQP. Alignment of PXX•+-d9-NMI-C60•- in the nematic liquid crystal 4-cyano-4'-(n-pentyl)biphenyl (5CB) at cryogenic temperatures results in well-resolved, narrow resonances for each electron spin. We demonstrate both single-qubit gate and two-qubit CNOT gate operations using both selective and nonselective Gaussian-shaped microwave pulses and broadband spectral detection of the spin states following the gate operations.

Keywords: gate operations; qubit; electron; spin qubit

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.