LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Triarylamine-Substituted Benzimidazoliums as Electron Donor-Acceptor Dyad-Type Photocatalysts for Reductive Organic Transformations.

Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory… Click to show full abstract

Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 μs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.

Keywords: electron donor; spectroscopy; substituted benzimidazoliums; donor acceptor; triarylamine substituted; acceptor dyad

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.