LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices.

Photo from wikipedia

Nanocomposite tectons (NCTs), polymer brush-grafted nanoparticles that use supramolecular interactions to drive their assembly, form ordered nanoparticle superlattices (NPSLs) with well-defined unit cell symmetries when thermally annealed. In this work,… Click to show full abstract

Nanocomposite tectons (NCTs), polymer brush-grafted nanoparticles that use supramolecular interactions to drive their assembly, form ordered nanoparticle superlattices (NPSLs) with well-defined unit cell symmetries when thermally annealed. In this work, we demonstrate that appropriate assembly and processing conditions can also enable control over the microstructure of NCT lattices by balancing the enthalpic and entropic factors associated with ligand packing and supramolecular bonding during crystallization. Unary systems of NCTs are assembled via the addition of a small molecule capable of binding to multiple nanoparticle ligands; these NCTs initially form face-centered-cubic (FCC) structures in solvents that are favorable for the particles' polymer brushes. However, the FCC lattices undergo a reversible, diffusionless phase transition to body-centered-cubic (BCC) lattices when transferred to a solvent that induces polymer brush collapse. The BCC superlattices maintain the same crystal habit as the parent FCC phase but exhibit significant transformation twinning similar to that seen in martensitic alloys. This previously unseen diffusionless phase transformation in NPSLs enables unique microstructural features in the resulting assemblies, suggesting that NPSLs could serve as models for the investigation of microstructural evolution in crystalline systems and extend our understanding of NPSLs as atomic material analogues.

Keywords: nanoparticle superlattices; transitions nanoparticle; phase transitions; phase; reversible diffusionless; diffusionless phase

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.