LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Crystallographic Characterization of a Reduced Bimetallic Yttrium ansa-Metallocene Hydride Complex, [K(crypt)][(μ-CpAn)Y(μ-H)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2), with a 3.4 Å Yttrium-Yttrium Distance.

The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(μ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized… Click to show full abstract

The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(μ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized by hydrogenolysis of the allyl complex CpAnY(η3-C3H5)(THF), which was prepared from (C3H5)MgCl and [CpAnY(μ-Cl)]2. Treatment of [CpAnY(μ-H)(THF)]2 with excess KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) generates an intensely colored red-brown product crystallographically identified as [K(crypt)][(μ-CpAn)Y(μ-H)]2. The two rings of each CpAn ligand in the reduced anion [(μ-CpAn)Y(μ-H)]21- are attached to two yttrium centers in a "flyover" configuration. The 3.3992(6) and 3.4022(7) Å Y···Y distances between the equivalent metal centers within two crystallographically independent complexes are the shortest Y···Y distances observed to date. Ultraviolet-visible (UV-visible)/near infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy support the presence of Y(II), and theoretical analysis describes the singly occupied molecular orbital (SOMO) as an Y-Y bonding orbital composed of metal 4d orbitals mixed with metallocene ligand orbitals. A dysprosium analogue, [K(18-crown-6)(THF)2][(μ-CpAn)Dy(μ-H)]2, was also synthesized, crystallographically characterized, and studied by variable temperature magnetic susceptibility. The magnetic data are best modeled with the presence of one 4f9 Dy(III) center and one 4f9(5dz2)1 Dy(II) center with no coupling between them. CASSCF calculations are consistent with magnetic measurements supporting the absence of coupling between the Dy centers.

Keywords: cpan; ansa metallocene; crypt; yttrium ansa; yttrium; bimetallic yttrium

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.