LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stereoelectronic Modulation of a Single-Molecule Junction through a Tunable Metal-Carbon dπ-pπ Hyperconjugation.

Photo by ldxcreative from unsplash

Conjugated molecules play a critical role in the construction of single-molecule devices. However, most conventional conjugated molecules, such as hydrocarbons, involve only a pπ-pπ conjugation of light elements. While the… Click to show full abstract

Conjugated molecules play a critical role in the construction of single-molecule devices. However, most conventional conjugated molecules, such as hydrocarbons, involve only a pπ-pπ conjugation of light elements. While the metal d-orbitals can introduce abundant electronic effects to achieve novel electronic properties, it is very scarce for the charge transport study of dπ-pπ conjugated pathways with a metal involved. Here, we employed the single-molecule break junction technique to investigate the charge transport through dπ-pπ conjugated backbones with metal-carbon multiple bonds integrated into the alternative conjugated pathways. The involved dπ-pπ conjugation not only supports high conductivity comparable to that of conjugated hydrocarbons but also significantly enhances the tunable diversity in electronic properties through the metal-induced secondary interaction. Specifically, the introduction of the metal brings an unconventionally stereoelectronic effect triggered by metal-carbon dπ-pπ hyperconjugation, which can be tuned by protonation taking place on the metal-carbon multiple bonds, collectively modulating the single-molecule rectification feature and transmission mechanism. This work demonstrates the promise of utilizing the diverse electronic effect of metals to design molecular devices.

Keywords: metal carbon; single molecule; metal; carbon hyperconjugation

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.