LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical Design of Pb-Free Relaxors for Giant Capacitive Energy Storage.

Photo from wikipedia

Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity… Click to show full abstract

Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity and the lack of general guidelines. Herein, we propose a map that captures the structural distortion (δ) and tolerance factor (t) of perovskites to design Pb-free relaxors with extremely high capacitive energy storage. Our map shows how to select ferroelectric with large δ and paraelectric components to form relaxors with a t value close to 1 and thus obtaining eliminated hysteresis and large polarization under a high electric breakdown. Taking the Bi0.5Na0.5TiO3-based solid solution as an example, we demonstrate that composition-driven predominant order-disorder characteristic of local atomic polar displacements endows the relaxor with a slushlike structure and strong local polar fluctuations at several nanoscale. This leads to a giant recoverable energy density of 13.6 J cm-3, along with an ultrahigh efficiency of 94%, which is far beyond the current performance boundary reported in Pb-free bulk ceramics. Our work provides a solution through rational chemical design for obtaining Pb-free relaxors with outstanding energy-storage properties.

Keywords: capacitive energy; free relaxors; design free; energy; storage; energy storage

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.