LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Three-Dimensional Molecular Perovskite Ferroelectric: (3-Ammoniopyrrolidinium)RbBr3.

Photo from wikipedia

It is known that CH3NH3PbI3 is particularly promising for next-generation solar devices; therefore, molecular perovskite structures have recently received extraordinary attention from the academic community because of their potential in… Click to show full abstract

It is known that CH3NH3PbI3 is particularly promising for next-generation solar devices; therefore, molecular perovskite structures have recently received extraordinary attention from the academic community because of their potential in producing unique physical properties. However, although great efforts have been made, molecular ferroelectrics with three-dimensional (3D) perovskite structures are still rare. So far, reported perovskite-like molecular ferroelectrics are basically one- or two-dimensional, significantly deviating from the inorganic perovskite ferroelectrics. Thus, their ferroelectric properties have to be greatly improved to meet the requirements of practical applications. Here, we report a 3D molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3 [(AP)RbBr3], with a high Curie temperature (Tc = 440 K) beyond that of BaTiO3. To the best of our knowledge, such above-room-temperature ferroelectricity in the 3D molecular perovskite compound is unprecedented. Furthermore, (AP)RbBr3 has great potential for applications due to its high thermal stability, ultrafast polarization reversal (greater than 20 kHz), and fascinating multiaxial characteristic. This finding opens a new avenue to the design and controllable synthesis of molecular ferroelectric perovskites, where the metal ion, halogen ion, and organic cation can be easily tuned.

Keywords: three dimensional; perovskite ferroelectric; molecular perovskite; ammoniopyrrolidinium rbbr3; ferroelectric ammoniopyrrolidinium; perovskite

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.