Combining bioorthogonal chemistry with the use of proteins engineered with adhesive and morphogenetic solid-binding peptides is a promising route for synthesizing hybrid materials with the economy and efficiency of living… Click to show full abstract
Combining bioorthogonal chemistry with the use of proteins engineered with adhesive and morphogenetic solid-binding peptides is a promising route for synthesizing hybrid materials with the economy and efficiency of living systems. Using optical sensing of chloramphenicol as a proof of concept, we show here that a GFP variant engineered with zinc sulfide and silica-binding peptides on opposite sides of its β-barrel supports the fabrication of protein-capped ZnS:Mn nanocrystals that exhibit the combined emission signatures of organic and inorganic fluorophores. Conjugation of a chloramphenicol-specific DNA aptamer to the protein shell through strain-promoted azide-alkyne cycloaddition and spontaneous concentration of the resulting nanostructures onto SiO2 particles mediated by the silica-binding sequence enables visual detection of environmentally and clinically relevant concentrations of chloramphenicol through analyte-mediated inner filtering of sub-330 nm excitation light.
               
Click one of the above tabs to view related content.