LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layered A2Sn3S7·1.25H2O (A = Organic Cation) as Efficient Ion-Exchanger for Rare Earth Element Recovery.

Photo from wikipedia

Exploring new ion-exchangers for the recovery of rare earth elements (REEs) and recycling is worthwhile for the high-tech industry and an eco-friendly sustainable economy. The efficient enrichment of low concentration… Click to show full abstract

Exploring new ion-exchangers for the recovery of rare earth elements (REEs) and recycling is worthwhile for the high-tech industry and an eco-friendly sustainable economy. The efficient enrichment of low concentration REE from complex aqueous solutions containing large excess of competitive ions is challenging. Here we present a chalcogenide example as a superior REE ion-exchanger efficiently removing them from very complex aqueous solutions, (Me2NH2)1.33(Me3NH)0.67 Sn3S7·1.25H2O (FJSM-SnS). The material exhibits fast and efficient ion exchange behavior with short equilibrium time (<5 min), high adsorption capacity (139 mg/g for Eu, 147 mg/g for Tb, 126 mg/g for Nd), wide pH resistance (1.9-8.5), the largest distribution coefficient (Kd) value of 6.5 × 106 mL/g, good selectivity against Al3+, Fe3+, and Na+ ions, and high recovery rate (>99%) at low concentrations. Moreover, after ion-exchange, the REE in corresponding exchanged products could be easily recovered by elution. FJSM-SnS has superior capacity and faster absorption kinetics than other states of the artificial REE sorbents such as Al2O3/EG, clay minerals, zeolite, and activated carbon.

Keywords: recovery; efficient ion; rare earth; ion; ion exchanger

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.