A new strategy for the construction of crystalline molecular rotors is presented. The combination of a conformation-modifiable macrocyclic host and two cooperative guests affords one supramolecular gyroscope-like compound, (t-BuNH3)(18-crown-6)[ZnCl3(H2O)], in… Click to show full abstract
A new strategy for the construction of crystalline molecular rotors is presented. The combination of a conformation-modifiable macrocyclic host and two cooperative guests affords one supramolecular gyroscope-like compound, (t-BuNH3)(18-crown-6)[ZnCl3(H2O)], in which the coordinated water molecule functions as an ultrasmall polar rotator, revealed by its significant dielectric relaxation and the molecular dynamics simulations. In addition, such a compound can reversibly undergo a polar-to-polar phase transition triggered by the changed conformation of the 18-crown-6 host, leading to a switchable on/off rotation of water molecule, well controlled by strength and direction of charge-assisted hydrogen bonds.
               
Click one of the above tabs to view related content.