LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

α-Halo Amides as Competent Latent Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction.

Photo by kellysikkema from unsplash

α-Halogenated carbonyl compounds are susceptible to dehalogenation and thus largely neglected as enolate precursors in catalytic enantioselective C-C bond-forming reactions. By merging the increased stability of the α-C-halogen bond of… Click to show full abstract

α-Halogenated carbonyl compounds are susceptible to dehalogenation and thus largely neglected as enolate precursors in catalytic enantioselective C-C bond-forming reactions. By merging the increased stability of the α-C-halogen bond of amides and the direct enolization methodology of the designed amide, we explored a direct catalytic asymmetric Mannich-type reaction of α-halo 7-azaindoline amides with N-carbamoyl imines. All α-halo substituents, α-F, -Cl, -Br, -I amides, were tolerated to provide the Mannich-adducts in a highly stereoselective manner without undesirable dehalogenation. The diastereoselectivity switched intriguingly depending on the substitution pattern of the aromatic imines, which is ascribed to stereochemical differentiation based on the open transition-state model. Functional group interconversion of the 7-azaindoline amide moiety of the Mannich-adducts and further elaboration into a diamide without dehalogenation highlight the synthetic utility of the present protocol for accessing enantioenriched halogenated chemical entities.

Keywords: direct catalytic; type reaction; mannich type; catalytic asymmetric; asymmetric mannich

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.