LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen Atom Abstraction Thermodynamics of a μ-1,2-Superoxo Dicopper(II) Complex.

Photo by norbertkowalczyk from unsplash

Pyrazolate-based μ-1,2-peroxo dicopper(II) complex 1 undergoes clean 1e- oxidation at low potential (-0.59 V vs Fc/Fc+) to yield the rather stable μ-1,2-superoxo dicopper(II) complex 3, which was characterized by spectroscopic… Click to show full abstract

Pyrazolate-based μ-1,2-peroxo dicopper(II) complex 1 undergoes clean 1e- oxidation at low potential (-0.59 V vs Fc/Fc+) to yield the rather stable μ-1,2-superoxo dicopper(II) complex 3, which was characterized by spectroscopic methods (ν̃(O-O) = 1070 cm-1, Δ(18O-16O) = -59 cm-1) and analyzed by DFT calculations. 3 is also formed via H-atom abstraction from the corresponding μ-1,1-hydroperoxo dicopper(II) complex 2, while 3 itself is able to abstract H-atoms from weaker X-H bonds such as TEMPO-H to re-form 2. Kinetic and thermodynamic analyses evidence a concerted proton-electron transfer pathway for these processes. The thermodynamic square scheme reveals a bond dissociation free energy of 71.7 ± 1.1 kcal mol-1 for the hydroperoxo OO-H bond of 2.

Keywords: dicopper; atom abstraction; thermodynamics; superoxo dicopper; dicopper complex

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.