LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymmetric Radical Bicyclization of Allyl Azidoformates via Cobalt(II)-Based Metalloradical Catalysis.

Photo by davidclode from unsplash

Cobalt(II)-based metalloradical catalysis has been successfully applied to radical bicyclization of allyl azidoformates to construct aziridine/oxazolidinone-fused bicyclic structures. The Co(II) complex of D2-symmetric chiral amidoporphyrin 3,5-DitBu-QingPhyrin has been identified as… Click to show full abstract

Cobalt(II)-based metalloradical catalysis has been successfully applied to radical bicyclization of allyl azidoformates to construct aziridine/oxazolidinone-fused bicyclic structures. The Co(II) complex of D2-symmetric chiral amidoporphyrin 3,5-DitBu-QingPhyrin has been identified as an effective metalloradical catalyst for the intramolecular radical aziridination of this type of carbonyl azides, allowing for high-yielding formation of synthetically useful chiral [3.1.0]-bicyclic aziridines with high diastereo- and enantioselectivity.

Keywords: metalloradical catalysis; cobalt based; bicyclization allyl; based metalloradical; radical bicyclization; allyl azidoformates

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.