LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase.

Photo from wikipedia

De novo biocatalysts have been successfully generated by computational design and subsequent experimental optimization. Here, we examined the evolutionary history of the computationally designed (retro-)aldolase RA95. The modest activity of… Click to show full abstract

De novo biocatalysts have been successfully generated by computational design and subsequent experimental optimization. Here, we examined the evolutionary history of the computationally designed (retro-)aldolase RA95. The modest activity of the starting enzyme was previously improved 105-fold over many rounds of mutagenesis and screening to afford a proficient biocatalyst for enantioselective cleavage and synthesis of β-hydroxyketones. Using a set of representative RA95 variants, we probed individual steps in the multistep reaction pathway to determine which processes limit steady-state turnover and how mutations that accumulated along the evolutionary trajectory influenced the kinetic mechanism. We found that the overall rate-limiting step for aldol cleavage shifted from C-C bond scission (or an earlier step in the pathway) for the computational design to product release for the evolved enzymes. Specifically, interconversion of Schiff base and enamine intermediates, formed covalently between acetone and the catalytic lysine residue, was found to be the slowest step for the most active variants. A complex hydrogen bond network of four active site residues, which was installed in the late stages of laboratory evolution, apparently enhances lysine reactivity and facilitates efficient proton shuffling. This catalytic tetrad accounts for the tremendous rate acceleration observed for all steps of the mechanism, most notably Schiff base formation and hydrolysis. Comparison of our results with kinetic and structural studies on natural aldolases provides valuable feedback for computational enzyme design and laboratory evolution approaches alike.

Keywords: mechanism; designed retro; retro aldolase; computationally designed; along evolutionary; evolutionary trajectory

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.