LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Interactions Control Quantum Chain Reactions toward Distinct Photoresponsive Properties of Molecular Crystals.

Photo from wikipedia

In this work, we fabricated four diphenylcyclopropenone (DPCP) crystals, which involved various molecular interactions encoded in individual molecular structures 1-4. On the basis of crystalline structural analysis and photoresponsive characterization… Click to show full abstract

In this work, we fabricated four diphenylcyclopropenone (DPCP) crystals, which involved various molecular interactions encoded in individual molecular structures 1-4. On the basis of crystalline structural analysis and photoresponsive characterization of the resultant single-crystal microribbons 1-4, we demonstrated that the magnitude of molecular interactions could effectively control the quantum chain reaction and the photoresponsive property of the DPCP crystals. The microribbons 1 and 2 having weak molecular interactions exhibited an efficient chain reaction and large mechanical photoresponses (i.e., photomelting and photodeforming), whereas the microribbons 3 and 4 with strong molecular interactions exhibited no chain reaction and mechanical morphology change. Our work presented a new way to achieve molecular crystals with enhanced mechanical photoresponses.

Keywords: chain; control quantum; molecular crystals; molecular interactions; quantum chain

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.