In this work, we fabricated four diphenylcyclopropenone (DPCP) crystals, which involved various molecular interactions encoded in individual molecular structures 1-4. On the basis of crystalline structural analysis and photoresponsive characterization… Click to show full abstract
In this work, we fabricated four diphenylcyclopropenone (DPCP) crystals, which involved various molecular interactions encoded in individual molecular structures 1-4. On the basis of crystalline structural analysis and photoresponsive characterization of the resultant single-crystal microribbons 1-4, we demonstrated that the magnitude of molecular interactions could effectively control the quantum chain reaction and the photoresponsive property of the DPCP crystals. The microribbons 1 and 2 having weak molecular interactions exhibited an efficient chain reaction and large mechanical photoresponses (i.e., photomelting and photodeforming), whereas the microribbons 3 and 4 with strong molecular interactions exhibited no chain reaction and mechanical morphology change. Our work presented a new way to achieve molecular crystals with enhanced mechanical photoresponses.
               
Click one of the above tabs to view related content.