LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N-Heterocyclic Carbene Initiated Anionic Polymerization of (E,E)-Methyl Sorbate and Subsequent Ring-Closing to Cyclic Poly(alkyl sorbate).

Photo by medias_emotiontech from unsplash

A diene-based cyclic polymer has been synthesized by the anionic polymerization of methyl sorbate (MS) by an N-heterocyclic carbene (NHC) in the presence of a bulky aluminum Lewis acid. We… Click to show full abstract

A diene-based cyclic polymer has been synthesized by the anionic polymerization of methyl sorbate (MS) by an N-heterocyclic carbene (NHC) in the presence of a bulky aluminum Lewis acid. We first polymerized methyl sorbate (MS) initiated by NHC in N,N-dimethylformamide (DMF) at 25 °C, poly(MS) with a number-average molecular weight (Mn) of 3.5 × 103 (Mw/Mn = 2.1) was obtained with a conversion of 93%. The structure was confirmed by 1H and 13C NMR and IR spectra, which revealed that the propagation proceeded via 1,2-addition as well as 1,4-addition. Although the polymerization did not occur in toluene in the absence of any additive, quantitative monomer consumption was observed in the presence of methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD) to afford the poly(MS) with a 1,4-trans structure, 86% of threo diastereoselectivity, and a Mn of 23.0 × 103 with narrow molecular weight distribution (Mw/Mn = 1.17). From the matrix assisted laser desorption/ionization (MALDI-TOF) mass spectra of poly(MS) and the hydrogenated analogue, ring-closing occurred by nucleophilic attack of the anionic propagating center into the adjacent carbon of the α-terminal imidazolimium group to afford cyclic poly(MS). The cyclic formation in the present synthesis system was confirmed by DSC and viscosity measurements.

Keywords: methyl sorbate; polymerization; anionic polymerization; poly

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.