LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic Enantioselective Hetero-dimerization of Acrylates and 1,3-Dienes.

Photo by bermixstudio from unsplash

1,3-Dienes are ubiquitous and easily synthesized starting materials for organic synthesis, and alkyl acrylates are among the most abundant and cheapest feedstock carbon sources. A practical, highly enantioselective union of… Click to show full abstract

1,3-Dienes are ubiquitous and easily synthesized starting materials for organic synthesis, and alkyl acrylates are among the most abundant and cheapest feedstock carbon sources. A practical, highly enantioselective union of these two readily available precursors giving valuable, enantio-pure skipped 1,4-diene esters (with two configurationally defined double bonds) is reported. The process uses commercially available cobalt salts and chiral ligands. As illustrated by the use of 20 different substrates, including 17 prochiral 1,3-dienes and 3 acrylates, this hetero-dimerization reaction is tolerant of a number of common organic functional groups (e.g., aromatic substituents, halides, isolated mono- and di-substituted double bonds, esters, silyl ethers, and silyl enol ethers). The novel results including ligand, counterion, and solvent effects uncovered during the course of these investigations show a unique role of a possible cationic Co(I) intermediate in these reactions. The rational evolution of a mechanism-based strategy that led to the eventual successful outcome and the attendant support studies may have further implications for the expanding use of low-valent group 9 metal complexes in organic synthesis.

Keywords: enantioselective hetero; catalytic enantioselective; dimerization; hetero dimerization; dimerization acrylates; acrylates dienes

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.