LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cooperative Electrocatalytic O2 Reduction Involving Co(salophen) with p-Hydroquinone as an Electron-Proton Transfer Mediator.

Photo by kellysikkema from unsplash

The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q… Click to show full abstract

The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q serves as an electron-proton transfer mediator (EPTM) that enables electrochemical O2 reduction at higher potentials and with faster rates than is observed with Co(salophen) alone. Replacement of H2Q with the higher-potential EPTM, 2-chloro-H2Q, allows for faster O2 reduction rates at higher applied potential. These results demonstrate a unique strategy to achieve improved performance with molecular electrocatalyst systems.

Keywords: reduction; salophen; proton transfer; transfer mediator; h2q; electron proton

Journal Title: Journal of the American Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.