LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Electron Transfer Mediated by Conjugated Polyelectrolyte and Its Application to Washing-Free DNA Detection.

Photo from wikipedia

Direct electron transfer between a redox label and an electrode requires a short working distance ( Click to show full abstract

Direct electron transfer between a redox label and an electrode requires a short working distance (<1-2 nm), and in general an affinity biosensor based on direct electron transfer requires a finely smoothed Au electrode to support efficient target binding. Here we report that direct electron transfer over a longer working distance is possible between (i) an anionic π-conjugated polyelectrolyte (CPE) label having many redox-active sites and (ii) a readily prepared, thin polymeric monolayer-modified indium-tin oxide electrode. In addition, the long CPE label (∼18 nm for 10 kDa) can approach the electrode within the working distance after sandwich-type target-specific binding, and fast CPE-mediated oxidation of ammonia borane along the entire CPE backbone affords high signal amplification.

Keywords: electron; direct electron; electron transfer; conjugated polyelectrolyte

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.