In order to extend the physical length of hole delocalization in a molecular wire, chromophores of increasing size are often desired. However, the effect of size on the efficacy and… Click to show full abstract
In order to extend the physical length of hole delocalization in a molecular wire, chromophores of increasing size are often desired. However, the effect of size on the efficacy and mechanism of hole delocalization remains elusive. Here, we employ a model set of biaryls to show that with increasing chromophore size, the mechanism of steady-state hole distribution switches from static delocalization in biaryls with smaller chromophores to dynamic hopping, as exemplified in the largest system, tBuHBC2 (i.e., "superbiphenyl"), which displays a vanishingly small electronic coupling. This important finding is analyzed with the aid of Hückel molecular orbital and Marcus-Hush theories. Our findings will enable the rational design of the novel molecular wires with length-invariant redox/optical properties suitable for long-range charge transfer.
               
Click one of the above tabs to view related content.