In this paper, we present a novel charge-free fluorescence-switchable near-infrared (IR) dye based on merocyanine for target specific imaging. In contrast to the typical bathochromic shift approach by extending π-conjugation,… Click to show full abstract
In this paper, we present a novel charge-free fluorescence-switchable near-infrared (IR) dye based on merocyanine for target specific imaging. In contrast to the typical bathochromic shift approach by extending π-conjugation, the bathochromic shift of our merocyanine dye to the near-IR region is due to an unusual S- cis diene conformer. This is the first example where a fluorescent dye adopts the stable S- cis conformation. In addition to the novel bathochromic shift mechanism, the dye exhibits fluorescence-switchable properties in response to polarity and viscosity. By incorporating a protein-specific ligand to the dye, the probes (for SNAP-tag and hCAII proteins) exhibited dramatic fluorescence increase (up to 300-fold) upon binding with its target protein. The large fluorescence enhancement, near-IR absorption/emission, and charge-free scaffold enabled no-wash and site-specific imaging of target proteins in living cells and in vivo with minimum background fluorescence. We believe that our unconventional approach for a near-IR dye with the S- cis diene conformation can lead to new strategies for the design of near-IR dyes.
               
Click one of the above tabs to view related content.