LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6.

Photo by julianhochgesang from unsplash

We investigate the consequences of dimensional confinement on halide double perovskites by synthesizing two-dimensional analogues of the recently reported three-dimensional double perovskite Cs2AgBiBr6. The layered perovskites (BA)4AgBiBr8 (1) and (BA)2CsAgBiBr7… Click to show full abstract

We investigate the consequences of dimensional confinement on halide double perovskites by synthesizing two-dimensional analogues of the recently reported three-dimensional double perovskite Cs2AgBiBr6. The layered perovskites (BA)4AgBiBr8 (1) and (BA)2CsAgBiBr7 (2) (BA = CH3(CH2)3NH3+) feature metal-halide sheets of mono and bilayer thickness, respectively, where the ordered double-perovskite lattice is partitioned by organic cations. Electronic structure calculations indicate that the indirect bandgap of Cs2AgBiBr6 becomes direct when the infinitely thick inorganic lattice is reduced to monolayer thickness. Calculations on model systems allow us to separate the effects of dimensional reduction from those of the accompanying structural distortions in the inorganic sublattice. Detailed optical characterization shows that the photophysical properties of 1 and 2 are markedly different than those of their well-studied lead-halide analogs. Hybrid layered derivatives of double perovskites substantially expand on the substitutional flexibility of halide perovskites to encompass greater compositional and electronic diversity.

Keywords: dimensional reduction; cs2agbibr6; double perovskites; cs2agbibr6 layered; halide double

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.