LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Precise Monoselective Aromatic C-H Bond Activation by Chemisorption of Meta-Aryne on a Metal Surface.

Photo from wikipedia

Aromatic C-H bond activation has attracted much attention due to its versatile applications in the synthesis of aryl-containing chemicals. The major challenge lies in the minimization of the activation barrier… Click to show full abstract

Aromatic C-H bond activation has attracted much attention due to its versatile applications in the synthesis of aryl-containing chemicals. The major challenge lies in the minimization of the activation barrier and maximization of the regioselectivity. Here, we report the highly selective activation of the central aromatic C-H bond in meta-aryne species anchored to a copper surface, which catalyzes the C-H bond dissociation. Two prototype molecules, i.e., 4',6'-dibromo- meta-terphenyl and 3',5'-dibromo- ortho-terphenyl, have been employed to perform C-C coupling reactions on Cu(111). The chemical structures of the resulting products have been clarified by a combination of scanning tunneling microscopy and noncontact atomic force microscopy. Both methods demonstrate a remarkable weakening of the targeted C-H bond. Density functional theory calculations reveal that this efficient C-H activation stems from the extraordinary chemisorption of the meta-aryne on the Cu(111) surface, resulting in the close proximity of the targeted C-H group to the Cu(111) surface and the absence of planarity of the phenyl ring. These effects lead to a lowering of the C-H dissociation barrier from 1.80 to 1.12 eV, in agreement with the experimental data.

Keywords: bond; aromatic bond; surface; activation; meta aryne

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.