LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C-N Coupling.

Photo from wikipedia

Due to the low intrinsic acidity of amines, palladium-catalyzed C-N cross-coupling has been plagued continuously by the necessity to employ strong, inorganic, or insoluble bases. To surmount the many practical… Click to show full abstract

Due to the low intrinsic acidity of amines, palladium-catalyzed C-N cross-coupling has been plagued continuously by the necessity to employ strong, inorganic, or insoluble bases. To surmount the many practical obstacles associated with these reagents, we utilized a commercially available dialkyl triarylmonophosphine-supported palladium catalyst that facilitates a broad range of C-N coupling reactions in the presence of weak, soluble bases. The mild and general reaction conditions show extraordinary tolerance for even highly base-sensitive functional groups. Additionally, insightful heteronuclear NMR studies using 15N-labeled amine complexes provide evidence for the key acidifying effect of the cationic palladium center.

Keywords: base barrier; base; breaking base; palladium; palladium catalyst

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.