Various rhodium(I) pincer complexes with different structural features have been prepared and found to display interesting self-assembly properties due to the extensive Rh(I)···Rh(I) interactions. The incorporation of electron-withdrawing -CF3 substituent… Click to show full abstract
Various rhodium(I) pincer complexes with different structural features have been prepared and found to display interesting self-assembly properties due to the extensive Rh(I)···Rh(I) interactions. The incorporation of electron-withdrawing -CF3 substituent has been found to improve the stability of the complexes and also facilitate the directed assembly of complex molecules, providing an opportunity for the systematic investigation of the various noncovalent interactions in their versatile self-assembly behaviors and insights into the structure-property relationship in governing the intermolecular interactions. An isodesmic growth mechanism is identified for the solvent-induced aggregation process. The complex molecules exhibit intense low-energy absorption bands corresponding to the absorptions of the dimers, trimers, and higher order oligomers upon aggregation, with energies related to the electronic properties of the tridentate N-donor ligand. Chiral auxiliaries have also been introduced into the rhodium(I) complexes to build up helical supramolecular assemblies and soft materials.
               
Click one of the above tabs to view related content.