LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn-OH2/OH Motifs Relevant to H2O Activation by the Oxygen Evolving Complex in Photosystem II.

Photo by cdc from unsplash

We report the synthesis of site-differentiated heterometallic clusters with three Fe centers and a single Mn site that binds water and hydroxide in multiple cluster oxidation states. Deprotonation of FeIII/II3MnII-OH2… Click to show full abstract

We report the synthesis of site-differentiated heterometallic clusters with three Fe centers and a single Mn site that binds water and hydroxide in multiple cluster oxidation states. Deprotonation of FeIII/II3MnII-OH2 clusters leads to internal reorganization resulting in formal oxidation at Mn to generate FeIII/II3MnIII-OH. 57Fe Mössbauer spectroscopy reveals that oxidation state changes (three for FeIII/II3Mn-OH2 and four for FeIII/II3Mn-OH clusters) occur exclusively at the Fe centers; the Mn center is formally MnII when water is bound and MnIII when hydroxide is bound. Experimentally determined p Ka (17.4) of the [FeIII2FeIIMnII-OH2] cluster and the reduction potentials of the [Fe3Mn-OH2] and [Fe3Mn-OH] clusters were used to analyze the O-H bond dissociation enthalpies (BDEO-H) for multiple cluster oxidation states. BDEO-H increases from 69 to 78 and 85 kcal/mol for the [FeIIIFeII2MnII-OH2], [FeIII2FeIIMnII-OH2], and [FeIII3MnII-OH2] clusters, respectively. Further insight of the proton and electron transfer thermodynamics of the [Fe3Mn-OH x] system was obtained by constructing a potential-p Ka diagram; the shift in reduction potentials of the [Fe3Mn-OH x] clusters in the presence of different bases supports the BDEO-H values reported for the [Fe3Mn-OH2] clusters. A lower limit of the p Ka for the hydroxide ligand of the [Fe3Mn-OH] clusters was estimated for two oxidation states. These data suggest BDEO-H values for the [FeIII2FeIIMnIII-OH] and [FeIII3MnIII-OH] clusters are greater than 93 and 103 kcal/mol, which hints to the high reactivity expected of the resulting [Fe3Mn═O] in this and related multinuclear systems.

Keywords: oxidation; thermodynamics; electron transfer; proton electron; oh2

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.