LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidative Coupling with Zr(IV) Supported by a Noninnocent Anthracene-Based Ligand: Application to the Catalytic Cotrimerization of Alkynes and Nitriles to Pyrimidines.

Photo by finleydesign from unsplash

We report the synthesis and reactivity of Zr complexes supported by a 9,10-anthracenediyl-linked bisphenoxide ligand, L. ZrIVLBn2 (1) undergoes facile photolytic reduction with concomitant formation of bibenzyl and ZrIVL(THF)3 (2),… Click to show full abstract

We report the synthesis and reactivity of Zr complexes supported by a 9,10-anthracenediyl-linked bisphenoxide ligand, L. ZrIVLBn2 (1) undergoes facile photolytic reduction with concomitant formation of bibenzyl and ZrIVL(THF)3 (2), which displays a two-electron reduced anthracene moiety. Leveraging ligand-stored reducing equivalents, 2 promotes the oxidative coupling of internal and terminal alkynes to isolable zirconacyclopentadiene complexes, demonstrating the reversible utilization of anthracene as a redox reservoir. With diphenylacetylene under CO, cyclopentadienone is formed stoichiometrically. 2 is competent for the catalytic formation of pyrimidines from alkynes and nitriles. Mechanistic studies suggest that selectivity for pyrimidine originates from preferred formation of an azazirconacyclopentadiene intermediate, which reacts preferentially with nitriles over alkynes.

Keywords: alkynes nitriles; supported noninnocent; anthracene; coupling supported; oxidative coupling; ligand

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.