LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capturing the Freeze-Drying Dynamics of NaCl Nanoparticles Using THz Spectroscopy.

Photo by priscilladupreez from unsplash

Sodium chloride (NaCl) aqueous solution becomes NaCl hydrate, NaCl·2H2O, at low temperature, which is different from potassium chloride and is a typical complex model for studying the freeze-drying process in… Click to show full abstract

Sodium chloride (NaCl) aqueous solution becomes NaCl hydrate, NaCl·2H2O, at low temperature, which is different from potassium chloride and is a typical complex model for studying the freeze-drying process in foods and pharmaceuticals. Here, we detected unit-cell-sized NaCl particles in ice as precursor substances of NaCl·2H2O during freezing of NaCl solution by using terahertz (THz) spectroscopy. In the freezing process, Na+ and Cl- ions form two types of metastable unit-cell-sized NaCl particles on the pathway to the well-known NaCl·2H2O crystal production, which are not listed in the phase diagram of freezing of NaCl solution but have absorption peaks in THz spectra. This finding of single unit-cell-sized particles signifies the importance of studying the freeze-drying process in-depth and offers a new possibility for the development of freeze-drying technology for the manufacture of nanometer-sized particles such as ultrafine pharmaceutical powders, which more readily dissolve in water.

Keywords: freeze drying; nacl 2h2o; spectroscopy; unit cell; thz spectroscopy

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.