LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evidence for a Single Electron Shift in a Lewis Acid-Base Reaction.

Photo from wikipedia

The Lewis acid-base reaction between a nucleophilic hafnocene-based germylene and tris-pentafluorophenylborane (B(C6F5)3) to give the conventional B-Ge bonded species in almost quantitative yield is reported. This reaction is surprisingly slow,… Click to show full abstract

The Lewis acid-base reaction between a nucleophilic hafnocene-based germylene and tris-pentafluorophenylborane (B(C6F5)3) to give the conventional B-Ge bonded species in almost quantitative yield is reported. This reaction is surprisingly slow, and during its course, radical intermediates are detected by EPR and UV-vis spectroscopy. This suggests that the reaction is initiated by a single electron-transfer step. The hereby-involved germanium radical cation was independently synthesized by oxidation of the germylene by the trityl cation or strong silyl-Lewis acids. A perfluorinated tetraarylborate salt of the radical cation was fully characterized including an XRD analysis. Its structural features and the results of DFT calculations indicate that the radical cation is a hafnium(III)-centered radical that is formed by a redox-induced electron transfer (RIET) from the ligand to the hafnium atom. This valence isomerization slows down the coupling of the radicals to form the polar Lewis acid-base product. The implications of this observation are briefly discussed in light of the recent finding that radical pairs are formed in frustrated Lewis pairs.

Keywords: lewis acid; acid base; base reaction; reaction; electron

Journal Title: Journal of the American Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.