LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Faraday Rotation on ε-Iron Oxide Magnetic Nanoparticles by Visible and Terahertz Pulsed Light.

Photo from wikipedia

Light- or electromagnetic wave-responsive magnetism is an attractive issue in spin chemistry and optical materials science. Herein we show the magnetization reversal induced by visible-light pulsed laser and the ultrafast… Click to show full abstract

Light- or electromagnetic wave-responsive magnetism is an attractive issue in spin chemistry and optical materials science. Herein we show the magnetization reversal induced by visible-light pulsed laser and the ultrafast dynamic magnetooptical effect caused by terahertz (THz) pulsed laser irradiation onto chemically synthesized magnetic films based on gallium-titanium-cobalt-substituted ε-Fe2O3 (GTC-ε-Fe2O3) and ε-Fe2O3 nanoparticles. Visible-light pulsed laser irradiation switches the sign of the Faraday effect in GTC-ε-Fe2O3 films. On the other hand, irradiating the ε-Fe2O3 film with pulsed THz light induces an ultrafast Faraday rotation in an extremely short time of 400 fs. The time evolution dynamics of these ultrafast magnetooptical effects are theoretically demonstrated by stochastic Landau-Lifshitz-Gilbert calculations of a nanoparticle model that considers all motions of the individual spins. These ε-iron oxide magnetic nanomaterials are expected to contribute to high-density magnetic memory media or high-speed operation circuit magnetic devices.

Keywords: nanoparticles visible; iron oxide; light; faraday rotation; oxide magnetic; fe2o3

Journal Title: Journal of the American Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.