Electrochemical C-C activations were accomplished by expedient oxidative rhodium(III) catalysis. Thus, oxidative C-C alkenylations proved viable with the aid of electricity, avoiding the use of toxic and/or expensive transition-metal oxidants.… Click to show full abstract
Electrochemical C-C activations were accomplished by expedient oxidative rhodium(III) catalysis. Thus, oxidative C-C alkenylations proved viable with the aid of electricity, avoiding the use of toxic and/or expensive transition-metal oxidants. The chelation-assisted C-C functionalizations proceeded with ample scope and excellent levels of chemo- and position selectivities within an organometallic C-C activation manifold. Detailed mechanistic studies provided support for a kinetically relevant C-C scission, and a well-defined organometallic rhodium(III) complex was identified as a catalytically competent intermediate. The electrochemical C-C functionalization was devoid of additional electrolytes, could be conducted on a gram scale, and provided position-selective access to densely 1,2,3-substituted arenes, which are not viable by C-H activation.
               
Click one of the above tabs to view related content.