Singlet fission has emerged as a key mechanism of exciton multiplication in organic chromophores, generating two triplet excitons from a single photon. Singlet fission is typically studied in crystalline films… Click to show full abstract
Singlet fission has emerged as a key mechanism of exciton multiplication in organic chromophores, generating two triplet excitons from a single photon. Singlet fission is typically studied in crystalline films or in isolated dimers. Here, we investigate an intermediate regime where through-space interactions mediate singlet fission and triplet pair recombination within isolated polymer chains. Specifically, we investigate how appending pentacenes to a polynorbornene backbone can lead to macromolecules that take advantage of through-space π-π interactions for fast singlet fission and rapid triplet pair dissociation. Singlet fission in these systems is affected by molecular dynamics, and triplet-triplet recombination is a geminate process where the rate of recombination scales with molecular-weight. We find that these pendent pentacene polymers yield free triplets with lifetimes that surpass those of crystalline chromophores in both solution as isolated polymers and in thin films.
               
Click one of the above tabs to view related content.