LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Assembly of Anionic Polyoxometalate-Organic Architectures Based on Lacunary Phosphomolybdates and Pyridyl Ligands.

Photo by bermixstudio from unsplash

The development of novel systems for metal-organic architectures is an attractive research field because they are fascinating materials with unexplored functions. Lacunary polyoxometalates (POMs) offer structurally well-defined coordination sites with… Click to show full abstract

The development of novel systems for metal-organic architectures is an attractive research field because they are fascinating materials with unexplored functions. Lacunary polyoxometalates (POMs) offer structurally well-defined coordination sites with various coordination directions and numbers in addition to the designable properties; thus, lacunary POMs are ideal building blocks for inorganic-organic architectures. However, their utilization is currently limited by their low stability and difficulty in controlling the reactivity. Here, we report the successful self-assembly of anionic POM-organic architectures comprising multivacant lacunary POMs and pyridyl ligands. By introducing pyridine moieties to its vacant sites, the trivacant lacunary phosphomolybdate [A-α-PMo9O34]9- is significantly stabilized in organic solvents. Furthermore, the resultant structure can be utilized as a stable and reactive building block to synthesize a dimer pillared by 4,4'-bipyridyl and a tetramer bridged by two cofacial porphyrin ligands, which can intercalate aromatic molecules.

Keywords: self assembly; organic architectures; pyridyl ligands; anionic polyoxometalate; assembly anionic

Journal Title: Journal of the American Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.