A proof-of-principle study of cascade dehydrogenative cross-coupling of carboranyl carboxylic acid with readily available benzamide has been achieved, resulting in the facile synthesis of previously inaccessible carborano-isoquinolinone derivatives in a… Click to show full abstract
A proof-of-principle study of cascade dehydrogenative cross-coupling of carboranyl carboxylic acid with readily available benzamide has been achieved, resulting in the facile synthesis of previously inaccessible carborano-isoquinolinone derivatives in a simple one-pot process, in which two cage B-H, one aryl C-H and one N-H bonds were sequentially activated to construct efficiently new B-C and B-N bonds, respectively. Under suitable reaction conditions, such cascade cyclization can be stopped at the first B-H/C-H cross-coupling step to give a series of α-carboranyl benzamides, suggesting the preferential occurrence of B-C cross-coupling over B-N one. The carboxylic acid directing group plays a key role in the B-C cross-coupling step, which is then removed through in-situ decarboxylation. The CV results combined with control experiments indicate that high-valent Ir(V)-species may be involved in the reaction pathways, which is crucial for such cascade dehydrogenative cross-coupling reactions. The isolation and structural identification of a key intermediate, its controlled transformations and deuterium labelling experiments support a new Ir-nitrene mediated amination for B-H/N-H dehydrocoupling.
               
Click one of the above tabs to view related content.