G-Quadruplexes (GQs) serve as popular recognition elements for DNA aptasensors and are incorporated into a DNA nanodevice capable of controlled conformational changes to activate a sensing mechanism. Herein we highlight… Click to show full abstract
G-Quadruplexes (GQs) serve as popular recognition elements for DNA aptasensors and are incorporated into a DNA nanodevice capable of controlled conformational changes to activate a sensing mechanism. Herein we highlight the utili-ty of a GQ-GQ nanodevice fueled by GQ-specific ligands as a label-free aptasensor detection strategy. The concept was first illustrated utilizing the prototypical polymorphic human telomeric repeat sequence (H-Telo22, d[AG3(T2AG3)3]) that can undergo ligand-induced topology changes between antiparallel, parallel or hybrid GQ structures. The H-Telo22-ligand interactions served as a model of the GQ-GQ nanodevice. The utility of the device in a real aptasensor platform was then highlighted utilizing the ochratoxin A (OTA) binding aptamer (OTABA) that folds into an antiparallel GQ in the absence and presence of target OTA. Three cationic fluorogenic ligands served as GQ-specific light-up probes and as po-tential fuel for the GQ-GQ nanodevice by producing an inactive GQ topology (parallel or hybrid) of OTABA. Our findings demonstrate efficient OTA-mediated dye displacement with excellent emission sensitivity for OTA detection when the fluorogenic dyes induce a topology change in OTABA (parallel or hybrid). However, when the fluorogenic dye fails to induce a conformational change in the antiparallel fold of OTABA, subsequent additions of OTA to the aptamer‒dye com-plex results in poor dye displacement with weak emission response for OTA detection. These results are the first to ex-emplify a ligand-induced GQ-GQ nanodevice as an aptasensor mechanism and demonstrate diagnostic applications for topology-specific GQ binders.
               
Click one of the above tabs to view related content.