LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers.

Photo by girlwithredhat from unsplash

Bottlebrush copolymers provide a covalent route to multicompartment nanomaterials that remain nanosegregated regardless of environmental conditions. This is particularly advantageous when combining polymers for optoelectronics, where the ability to control… Click to show full abstract

Bottlebrush copolymers provide a covalent route to multicompartment nanomaterials that remain nanosegregated regardless of environmental conditions. This is particularly advantageous when combining polymers for optoelectronics, where the ability to control the interface between multiple chemically distinct polymers can be key to a device's function. Here we prepare bottlebrush nanofibers from an acridine- and triazine-based donor/acceptor pair, which have been shown to exhibit thermally activated delayed fluorescence (TADF) via through-space charge transfer (TSCT). By controlling the morphology of the donor and acceptor domains within the bottlebrush, random, miktoarm, and block bottlebrush morphologies are obtained. Using these materials, nanofibers may be prepared which (i) strongly exhibit TSCT TADF; (ii) exhibit switchable TSCT TADF based on aggregation of the fibers; or (iii) preserve the properties of the original donor and acceptor components. This work demonstrates that a bottlebrush strategy may be used to either force or prevent interactions between chemically dissimilar optoelectronic polymers in blended thin films. In this way, we establish a convenient method for either maximizing or minimizing donor-acceptor interactions in semiconductor polymer blends, using different arrangements of the same building blocks within a bottlebrush nanofiber.

Keywords: bottlebrush; aggregation; delayed fluorescence; donor acceptor

Journal Title: Journal of the American Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.