Living systems achieve sophisticated functions using supramolecular protein assemblies, in which the protein building blocks possess a specific secondary structure and are noncovalently arranged in a preprogrammed manner. Herein, we… Click to show full abstract
Living systems achieve sophisticated functions using supramolecular protein assemblies, in which the protein building blocks possess a specific secondary structure and are noncovalently arranged in a preprogrammed manner. Herein, we demonstrate the one-step synthesis of one-dimensional macromolecular assemblies by simply mixing a glycine-based isocyanide with a nickel catalyst, in which helical constituent polymers are linked end-to-end through multiple hydrogen bonds. The applicable scope of this approach is not confined to a particular monomer bearing a specially designed pendant, but covers a wide range of glycine-based isocyanides with or without aromatic and other functional groups. Surprisingly, copolymerization with an analogous chiral isocyanide (1 mol%) afforded an almost perfect one-handed helical supramolecular fiber owing to intramolecular/intermolecular dual chiral amplifications. The simplicity and broad applicability of this approach, which can also afford exquisite chiral amplification, enable the creation of a wide variety of functional supramolecular assemblies and provides access to new supramolecular materials.
               
Click one of the above tabs to view related content.