LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Facet-Dependent Coordination Structures of Carboxylate Ligands on CdSe Nanocrystals.

Photo by bermixstudio from unsplash

Aliphatic carboxylates are the most common class of surface ligands to stabilize colloidal nanocrystals. The widely used approach to identify the coordination modes between surface cationic sites and carboxylate ligands… Click to show full abstract

Aliphatic carboxylates are the most common class of surface ligands to stabilize colloidal nanocrystals. The widely used approach to identify the coordination modes between surface cationic sites and carboxylate ligands is based on the empirical infrared (IR) spectroscopic assignment, which is often ambiguous and thus hampers the practical control of surface structures. In this report, multiple techniques based on nuclear magnetic resonance (NMR) and IR spectra are applied to distinguish the different coordination structures in a series of zinc-blende CdSe nanocrystals with unique facet structures, including nanoplatelets dominated with {100} basal planes, hexahedrons with only three types of low index facets (i.e., {100}, {110}, and {111}), and spheroidal dots without well-defined facets. Interpretation and assignment of NMR and IR signals were assisted by density functional theory (DFT) calculations. In addition to the identification of facet-sensitive bonding modes, the present methods also allow a non-destructive quantification of mixed ligands.

Keywords: identification facet; coordination; coordination structures; carboxylate ligands; cdse nanocrystals

Journal Title: Journal of the American Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.