LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoribbons with Non-Alternant Topology from Fusion of Polyazulene: Carbon Allotropes Beyond Graphene.

Photo from wikipedia

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic… Click to show full abstract

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tips and density functional theory calculations have been used to elucidate their structural properties. The proposed synthesis of non-alternant carbon nanoribbons from the fusion of synthetic line-defects may pave the way for large-area preparation of novel 2D carbon allotropes.

Keywords: carbon; topology; nanoribbons non; carbon allotropes; polyazulene; non alternant

Journal Title: Journal of the American Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.