LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Evaluation of a Tethered, Open Port Sampling Interface for Liquid Extraction-Mass Spectrometry Chemical Analysis.

Photo from wikipedia

Presented is a tethered, liquid-extraction-sampling interface designed for the mass spectrometric surface sampling/analysis of 3D objects. The tethered, open port sampling interface (TOPSI) incorporates a vacuum line between the sampling… Click to show full abstract

Presented is a tethered, liquid-extraction-sampling interface designed for the mass spectrometric surface sampling/analysis of 3D objects. The tethered, open port sampling interface (TOPSI) incorporates a vacuum line between the sampling probe and ionization source, which enables the ability for an extended, tethered sample transfer line. Herein, several designs of the hand-held TOPSI are presented and evaluated on the basis of the analytical metrics of analyte transport time, peak width, and analyte sensitivity. The best analytical metrics were obtained with capillary flow resistances arranged in a particular order and the vacuum region set at 6.2 kPa. This TOPSI design incorporated a transfer capillary 1 m in length, while retaining a fast analyte transport time (12 s), short signal peak width (5 s baseline-to-baseline), and high analyte signal at 90% of that obtained with a regular open port sampling interface (OPSI). The hand-held TOPSI was demonstrated for the characterization of extracted small molecules and metabolites from the surface of mint and rosemary leaves.

Keywords: mass; open port; port sampling; sampling interface; interface

Journal Title: Journal of the American Society for Mass Spectrometry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.