LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Integrated Approach for Discovering Noncanonical MHC-I Peptides Encoded by Small Open Reading Frames.

Photo from wikipedia

MHC-I peptides are a group of important immunopeptides presented by major histocompatibility complex (MHC) on the cell surface for immune recognition. The majority of reported MHC-I peptides are derived from… Click to show full abstract

MHC-I peptides are a group of important immunopeptides presented by major histocompatibility complex (MHC) on the cell surface for immune recognition. The majority of reported MHC-I peptides are derived from protein coding sequences, and noncanonical peptides translated from small open reading frames (sORF) are largely unknown due to the lack of accurate and sensitive detection methods. Herein we report an efficient approach that implements complementary bioinformatic strategies to improve the identification of noncanonical MHC-I peptides. In a database search strategy, noncanonical immunopeptides mapping was optimized by combining three complementary pipelines to construct predicted sORF databases from Ribo-seq data. In a de novo peptide sequencing strategy, MS data search results were filtered against sORF databases to pin down additional noncanonical immunopeptides. In total, 308 noncanonical immunopeptides were identified from two tumor cell lines with selected ones vigorously validated. Our approach is a handy solution to identify noncanonical MHC peptides with Ribo-seq and MS data. Meanwhile, the novel noncanonical immunopeptides identified with this method could shed insights on fundamental immunology as well as cancer immunotherapies.

Keywords: small open; mhc; noncanonical mhc; approach; mhc peptides; open reading

Journal Title: Journal of the American Society for Mass Spectrometry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.