Solid-phase microextraction (SPME)-direct mass spectrometry (MS) has proven to be an efficient tool for the rapid screening and quantitation of target compounds at trace levels. However, it is challenging to… Click to show full abstract
Solid-phase microextraction (SPME)-direct mass spectrometry (MS) has proven to be an efficient tool for the rapid screening and quantitation of target compounds at trace levels. However, it is challenging to perform screening using both positive and negative modes in one analytical run without compromising scanning speed and detection sensitivity. To take advantage of the special geometry of a coated blade spray (CBS) blade, which consists of two flat sides coated with the same SPME coating, we developed a CBS-MS method that enables desorption and ionization to be performed in positive ionization mode on one side of a coated blade and negative ionization mode on the other side of the same blade. By simply flipping the blade 180°, MS analysis in both ionization modes on different sides can be completed in 40 s. Combining this approach with an automated Concept 96-blade-based SPME system allowed analysis for one sample in positive and negative modes to be completed in less than 1 min. The workflow was optimized by using a biocompatible polyacrylonitrile as an undercoating layer and a binder of polyacrylonitrile/hydrophilic-lipophilic balance (HLB) particles, which enabled the rapid analysis of 20 drugs of abuse in saliva samples in both positive and negative modes. The proposed method provided low limits of quantification (between 0.005 and 10 ng/mL), with calibration linear correlation coefficients ⩾ 0.9925, accuracy between 72% and 126%, and relative precision < 15% for three validation points.
               
Click one of the above tabs to view related content.