LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gas-Phase Reactivity of Ozone with Lanthanide Ions (Sm+, Nd+) and Their Higher Oxides.

Photo from wikipedia

The kinetics of SmOn+ (n = 0-2) and NdOn+ (n = 0-2) with O3 are measured using a selected-ion flow tube. Reaction of Nd+ to yield NdO+ + O2 occurs… Click to show full abstract

The kinetics of SmOn+ (n = 0-2) and NdOn+ (n = 0-2) with O3 are measured using a selected-ion flow tube. Reaction of Nd+ to yield NdO+ + O2 occurs rapidly, with a rate constant near the capture-controlled limit of ∼8 × 10-10 cm3 s-1. NdO+ reacts at ∼40% of the capture limit to yield NdO2+ with little temperature dependence from 200 to 400 K. NdO2+ likely reacts very slowly (k ∼ 10-13 cm3 s-1) to yield NdO+ + 2O2, does not react to yield NdO3+, and associates slowly (k ∼ 10-12 cm3 s-1) to yield NdO2+(O3)1-3. Reaction of Sm+ also yields SmO+ at near the capture limit at all temperatures, but a significant fraction (∼50%) of the SmO+ is produced in excited states that are long-lived compared to the millisecond time scale of the experiment. These states are evidently resistant to both radiative and collisional relaxation. The excited-state production is likely due to a spin-conservation constraint on the reaction, despite the large spin-orbit coupling typical for lanthanide-containing species. Ground-state SmO+ reacts inefficiently (k = 2 × 10-11 (T/300)-2.5 cm3 s-1) to yield SmO2+ + O2, while the excited-state SmO+* reacts at the capture limit, with branching to yield Sm+ + 2O2 (ΔHr,0K = 148.7 ± 0.4 kJ mol-1 for ground-state SmO+) approximately 60% of the time, the remainder forming SmO2+, which further reacts with O3 to yield SmO+ at about 1% of the collisional value.

Keywords: state; capture limit; cm3 yield; yield; smo; lanthanide

Journal Title: Journal of the American Society for Mass Spectrometry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.