LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Pyridinium Derivatization Reagent for Highly Sensitive Detection of Poly(carboxylic acid)s Using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry.

Photo by sharonmccutcheon from unsplash

Short-chain fatty acids are difficult to analyze with high sensitivity using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) owing to the high polarity of their carboxyl groups. Various derivatization methods have been… Click to show full abstract

Short-chain fatty acids are difficult to analyze with high sensitivity using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) owing to the high polarity of their carboxyl groups. Various derivatization methods have been developed; however, most are effective only for monocarboxylic acids and not for those having multiple carboxyl groups. Therefore, we successfully attempted to synthesize a derivatization reagent that could analyze both mono- and poly(carboxylic acid)s with high sensitivity. We optimized our derivatization reagent by modifying the structure of the reaction site, hydrophobicity of the derivatized compound, and linker structure connecting the reaction site to the permanently charged substructure. The reactivity toward carboxyl groups was improved by employing a piperidine moiety as the reaction site, and the ESI efficiency was improved by the highly hydrophobic and permanently charged triphenylpyridinium group. Furthermore, the incorporation of an alkyl linker enabled polylabeling. When the optimized reagent was applied to mono-, di-, tri-, and tetracarboxylic acids, the ESI efficiency increased with polylabeling; thus, our derivatization reagent outperforms existing derivatization methods and enables the analysis of poly(carboxylic acid)s with high sensitivity. Since this derivatization reagent can be applied to most carboxyl-containing compounds, it can be widely used for lipidomics, proteomics, and metabolomics.

Keywords: derivatization reagent; reagent; carboxylic acid; mass spectrometry; poly carboxylic; derivatization

Journal Title: Journal of the American Society for Mass Spectrometry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.