Copper(I) borohydride ate complexes of the type Cat+[XCu(BH4)]- have been previously postulated as intermediates in the reactions of copper salts with borohydride. Negative ion electrospray ionization of an acetonitrile solution… Click to show full abstract
Copper(I) borohydride ate complexes of the type Cat+[XCu(BH4)]- have been previously postulated as intermediates in the reactions of copper salts with borohydride. Negative ion electrospray ionization of an acetonitrile solution of copper(I) phenylacetylide with a 10-fold excess of sodium borohydride (NaBH4) revealed the formation of a diverse range of mononuclear, dinuclear and trinuclear cuprates with different numbers of BH4-, H- and CN- ligands, the latter likely being formed by abstraction of CN- from the acetonitrile solvent. Collision-induced dissociation was used to examine the fragmentation reactions of the following borohydride containing cuprates: [Cu(H)(BH4)]-, [Cu(BH4)2]-, [Cu(BH4)(CN)]-, [Cu2(H)(BH4)2]-, [Cu2(H)2(BH4)]-, [Cu2(BH4)2(CN)]-, [Cu2(H)(BH4)(CN)]-, [Cu3(H)(BH4)3]-, [Cu3(H)2(BH4)2]-, [Cu3(H)3(BH4)]-, [Cu3(BH4)2(CN)2]-, and [Cu3(H)(BH4)2(CN)]-. In all cases, BH3 loss is observed. For many of the dinuclear and trinuclear complexes cluster fragmentation by loss of CuH was also observed. In the case of [Cu2(H)2(BH4)]- and [Cu3(H)3(BH4)]-, loss of H2 was also observed. DFT calculations were used to explore potential structures of the various borohydride-containing cuprates and to predict the overall reaction energetics for the various fragmentation channels.
               
Click one of the above tabs to view related content.