LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using New Peak Detection to Solve Sequence Variants Analysis Challenges in Bioprocess Development.

Photo by robertbye from unsplash

Recombinant therapeutic proteins have become the major class of drugs to treat various human diseases in recent years. Low levels of protein sequence variants (SVs) have been reported to be… Click to show full abstract

Recombinant therapeutic proteins have become the major class of drugs to treat various human diseases in recent years. Low levels of protein sequence variants (SVs) have been reported to be present in recombinant therapeutic proteins. The consequences of potential unwanted immune response from SVs of recombinant therapeutic proteins have increasingly drawn attention from regulatory authorities and the biopharmaceutical industry. It is highly desirable to detect low-level SVs during clone selection and early process development as part of the control strategy. Peptide mapping with LC-MS/MS analysis has been applied as a powerful tool to characterize post-translation modifications of therapeutic proteins. Despite the recent advancements in mass spectrometry hardware and software, it is still quite challenging and time-consuming to detect and identify low-level SVs. In this study, we present an optimized approach using new peak detection to detect and identify low level SVs with high confidence and high speed. The new approach makes sequence variants analysis by LC-MS/MS broadly applicable and practical in bioprocess development of therapeutic proteins.

Keywords: new peak; therapeutic proteins; development; using new; sequence variants

Journal Title: Journal of the American Society for Mass Spectrometry
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.